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Abstract—We present a method to derive the space-time 

evolution of the angular power distribution when it is transmitted 
throughout large core step index (SI) plastic optical fibers 
(POFs). The model is based on the power flow equation 
generalized to introduce the temporal dimension where the 
diffusion and attenuation of the fibers are given by functions of 
the propagation angle. To solve this equation we propose a fast 
implementation of the finite-difference method in matrix form. 
We calculate model predictions for the fiber frequency response 
versus length and then, compare them to experimental data. We 
found that angular diffusion has a strong impact on temporal 
pulse widening with propagation. Thus, a better understanding 
of power propagation can prove very useful in increasing the 
bandwidth of POF links in real situations. 
 

Index Terms— SI-POF diffusion model, Power Flow equation, 
Frequency response. 
 

I. INTRODUCTION 
ULTIMODE fibers transmission properties (attenuation 
and bandwidth) show non-linear changes with 

propagation length whose origin is attributed to mode 
coupling. In fact, the concatenation factor is an empirical 
parameter widely used when estimating the fiber maximum 
span for a given data rate. Plastic optical fibers, with highly 
multimode transmission and strong mode coupling, show a 
complex relationship between bandwidth and length different 
from ray-theory predictions [1]. In the literature there are 
several proposals to obtain bandwidth from other parameters 
such as numerical aperture (NA) [2]. We showed in previous 
studies that this model cannot give a complete description of 
the changes in bandwidth with length.  

In another work, we devised a method based on Gloge’s 
power flow equation and on experimental far field patterns  

 
(FFPs) to obtain the angular diffusion and attenuation 
functions characteristic of a given fiber [3]. These functions 
provide an overall description of the fiber behavior and, along 
with the power flow equation, can be used to predict output 
power angular distributions at any fiber lengths and for any 
launching conditions [4].  
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Here, we propose the use of Gloge’s generalization of the 
differential power flow equation to obtain the pulse temporal 
spread with propagation [5]. The temporal dependence is 
introduced into the equation which is then solved in the 
temporal frequency domain using a fast matrix approach of the 
finite-difference method for the given angular diffusion and 
attenuation functions. In this way, the frequency response can 
be obtained for each particular fiber at a range of lengths. To 
verify the model, these estimates have been compared to 
frequency response functions measured for the same fibers 
and conditions than the FFPs used to determine the angular 
diffusion and attenuation. 

In this paper, we first briefly describe the experimental set-
up and methods to obtain the FFPs and frequency responses 
versus length for the tested POFs. Second, we describe our 
model based on Gloge’s differential equation and the fast 
procedure devised to solve it. Third, we present the results, 
comparing the experimental and predicted frequency 
responses. Afterwards, we discuss the model predictions that 
can be applied to design configurations that optimize POF 
behavior in real links. Finally, we summarize the conclusions.  

II. EXPERIMENTAL METHODS 
We measured the frequency response and FFP versus fiber 

length for three PMMA fibers of 1mm diameter from different 
manufacturers: ESKA-PREMIER GH4001 (GH) from 
Mitsubishi, HFBR-RUS100 (HFB) from Agilent, and PGU-
FB1000 (PGU) from Toray. The GH and PGU fibers have a 
NA of 0.5, corresponding to a 19.5º inner critical angle. The 
HFB fiber has a NA of 0.47 which implies an 18.5º inner 
critical angle. For each fiber both the FFP and frequency 
responses were measured under the same launching 
conditions, taken sequentially starting from a long fiber 
(175m-100m) down to 10m. We measured the frequency 
response at each length using a frequency method which 
consists on sweeping the frequency of a pure sinusoidal 
waveform that is fed to an AlGaInP laser diode (LD SANYO 
DL-3147-021) emitting a maximum of 5mW at 645nm and 
with a typical divergence of 30º in the perpendicular plane, 
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and of 7.5º in the parallel plane [6]. The receptor is based on a 
1mm diameter photodiode (FDS010) whose output is 
amplified using a 40dB amplifier (Mini-Circuits ZKL-1R5) 
with a band-pass from 10MHz to 1.5GHz. A wideband 
Infinium DCA 86100A oscilloscope from Agilent is connected 
to the output of the amplifier and captures the received signal 
whose amplitude is directly related with the frequency 
response of the system. The devices are fully controlled and 
data is acquired by the computer through the GPIB and 
processed to make our method more robust and to extend the 
bandwidth measurements far above the system bandwidth (up 
to 1GHz). The frequency response of a short segment of fiber 
(75cm) is obtained to be used as a reference to characterize the 
effect of the electrical components. At the same time, the FFP 
images were captured using a set-up which has been 
thoroughly described elsewhere [3, 7]. 

III. THEORY 
We use Gloge’s power flow equation to describe the 

evolution of the modal power distribution as it is transmitted 
throughout a POF where different modes are characterized by 
their propagation angle with respect to fiber axis (θ), which 
can be taken as a continuous variable [3, 5]. We make no 
assumptions about the angular diffusion, d(θ), and attenuation, 
α(θ), which are described as functions of θ. Following the 
procedure described in [5], we introduce the temporal 
dimension and, given that ( )θcos= cndzdt , we obtain the 
following equation: 
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Then, we take the Fourier transform at both sides of equation 
(1) and use the Fourier derivation property to obtain the 
following simplified equation: 
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where  is the Fourier 

transform of
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),,( tzP θ . 
To solve this differential equation we implement a finite-

difference method where we use a forward difference for the 
first angular derivative at θ, and a second-order central 
difference for the second derivative, obtaining the power at 
angle θ  and distance z+Δz as the combination of the power at 
the same angle and the two adjacent angles (θ+Δθ, θ−Δθ) at 
distance z as shows the resulting equation: 
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For any pair of lengths, z2 > z1, we can put the difference 
equation in matrix notation as: 
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A is a diagonal matrix that describes power propagation 
without diffusion and whose elements are given by: 
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which is the first order approximation of:   
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Notice that A is the only frequency dependent term in the 
equation. For ω=0, the solution of the equation is the FFP at a 
given length L, ),( LzP =θ . Iteration over the values of ω 
gives the complete spatial and temporal evolution of the 
optical power in the fiber. The complex values of )(, ωkkA are 

obtained by sampling the angular frequency ω as required for 
a precise calculation of the inverse discrete Fourier transform 
of ),,( ωθ zp to obtain )t,,( zP θ . 

The matrix D is a tri-diagonal matrix which accounts for 
diffusion along the fiber. Its elements for k>0 are: 
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These matrix elements describe power diffusion through a 
differential length of the fiber indicating the fraction of power 
that flows out from a given angle, and the fraction that drifts to 
this angle from the adjacent ones. The undetermined value at 
k=0 corresponding to θ=0, is obtained by applying the 
approximation used in [8]: 
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and the evenness property of  ( zP , )θ  with θ, which result in: 
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Matrix (A(ω)+D) carries all space-time information 
concerning power propagation through the fiber and thus, 
gives a complete description of the fiber as a transmission 
system. The key of the method we propose to solve equation 
(2) is to take advantage of the sparse nature of this matrix. 
Thus, to calculate multiple matrix powers is more efficient 
than to perform the same number of iterations, particularly 
when using MatLab®. Even more, it is not necessary to re-
calculate them when changing the initial condition to obtain 
the final space-time output power distribution. Once the initial 
condition is multiplied by the system matrix, it is possible to 
obtain the frequency response for each output angle, 

),,( ωθ zp , as well as the global frequency response by 
integrating the total power for all angles at a given frequency: 

θωθθω dLpLp ),,()sin(=),( ∫
+∞

∞−
.  (11) 

Its inverse Fourier transform gives the pulse spreading at this 
length, P(L, t). The values of Δz and Δθ  that are critical for 
convergence have been determined according to the required 
precision. We have used Δz=0.001 m and Δθ=0.005 rad 
obtaining accurate results. 

IV. RESULTS 
We introduced in the model the diffusion and attenuation 

functions, d(θ) and α(θ), previously estimated for the three 
different POFs [3] from experimental FFPs, to obtain the 
global frequency response versus length for each fiber. The 
experimental frequency responses, obtained in the same 
conditions than the FFPs, are shown in Figure 1 as circles for 
the three fibers: GH, in the upper graph; HFB, in the middle 
graph, and PGU, in the lower graph. In each graph, the 
different curves are the frequency responses at four different 
lengths: 10m, 20m, 65m and the longest tested length which 
was different for each fiber: 175m for GH; 100m for HFB and 
150m for PGU. The frequency responses calculated using the 
model, are also represented in the plots as solid lines, showing 
that there is an overall good agreement between the 
predictions and the experimental data, particularly at the 
longest lengths given by the two bottom curves. 

Moreover, the model allows us to obtain the output power 
distribution as a joint function of output angle and time at any 
fiber length, ),,( tzP θ as the inverse Fourier transform of the 
calculated frequency response ),,( ωθ zp . The integrated 
power over the output angle results in the temporal pulse 
spread which has been normalized to represent it in the upper 
row of Figure 2 for the three fibers at the longest tested length. 
These functions are the inverse transform of the corresponding 
frequency responses shown in Figure 1. In the lower row, the 
power spread is represented as a joint function of output angle 
and time also for the longest fiber lengths ),,( tLzP MAX=θ . 
Time is shown on the horizontal axis in nanoseconds and 
output angle in degrees on the vertical axis. Power level is 
gray-scale coded darker for the higher levels and lighter for 
the lower level. Each horizontal section represents the 
temporal pulse arriving at a given output angle. Vertical 

sections are the radial profiles of the spatial power distribution 
at a fixed time. The integrated power over time gives the 
radial profile of the FFP which has been previously compared 
to the experimental FFPs [3]. The solid line over the image 
represents the delay at which the maximum power arrives at 
each output angle. The dashed line shows the delay obtained 
without diffusion given by the ray-theory inverse cosine law. 

V. DISCUSSION 
The graphs in Figure 1 with the experimental and model-

predicted frequency responses show that the overall tendency 
is well captured by the model. However, there are some 
discontinuities in the experimental data which are not 
followed by the model predictions. These discontinuities arise 
from localized defects or strain in the fiber which, when 
removed by the cut-off procedure, let the remaining fiber 
recover its normal predictable behavior. Although the model is 
capable to include these effects, they are usually unknown and 
practically impossible to detect prior the measurements. 
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Fig. 1.  Frequency responses for GH, HFB and PGU. Comparison of 
experimental measurements (circles) and model predictions (solid lines) for 
four lengths (10m, 20m, 65m and the longest measured fiber length) 
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The upper row in Figure 2 shows the pulse time spread, 
which is the normalized inverse Fourier transform of the 
bottom curve in each graph of Figure 1. A common feature of 
these curves for all fibers is their asymmetry. Power rises first 
very steeply to its maximum and then, slowly decreases with a 
long tail which extends towards delays of 30 ns. There are, 
however, noticeable differences among fibers. For example, 
pulse spread for the HFB fiber is much narrower both in the 
peak and in the tail than those for the other two fibers, as 
corresponds to its wider frequency response in Figure 1. 

The space-time distribution of the output power at the lower 
row of Figure 2 helps to understand the relationship between 
the angular power distribution and the pulse spreading through 
modal diffusion. The contour plots show how power at a range 
of low angles is concentrated at the shortest delays, while at 
higher angles the peak is at higher delays and there is a wider 
time spread. Although the overall shape is similar for all the 
fibers tested, the angular and temporal ranges are different and 
characteristic for each fiber type.  

These effects are more clearly shown by the lines joining 
the maxima that start at a delay of a few nanoseconds, from 3 
ns to 5 ns, depending on the fiber, following a nearly vertical 
line up to an angle between 8º-10º from where they start 
increasing. This increase is, however, steeper than the one 
given by the cosine prediction indicating longer delays for 
these angles in the absence of diffusion. These results support 
our previous findings consistent with diffusion mixing up the 
lower angles from the first fiber meters [9]. In this way, the 
vertical portion of the curve at low angles is explained by a 

strong coupling that equalizes all the deterministic trajectories 
making all these angles to share an average trajectory. On the 
other hand, for higher angles the combined effect of diffusion 
and differential attenuation causes the power in higher angles 
to skew towards lower angles. This effect will shorten their 
delays and increase their differential attenuation relative to the 
case without diffusion. 

Changes along the horizontal dimension show the evolution 
of the radial profile with time that can be exploited to improve 
the frequency response for a given fiber. The contour shape 
suggests an easy way to improve fiber capacity by spatial 
filtering out of the tail at the higher angles. Most power is 
confined in a range of lower angles, up to 8º for the GH and 
PGU fibers and 10º for the HFB, with the same peak delay and 
a narrow temporal spread. Thus, filtering out the power at the 
highest angles with a spatial filter will produce a narrower 
overall impulse response with small power loss.  

We have recalculated the impulse response for 50 meters of 
the three fibers after filtering out the angular power above 
13.5º. In Figure 3 the space-time power distributions at 50m 
are shown in the upper row in the same way as in Figure 2. 
The dashed line is the spatial filter cut-off of 13.5º which helps 
to visualize its effect. The lower row shows a comparison 
between the original (dashed lines) and the filtered frequency 
responses (solid lines), displaying a notable improvement for 
most frequencies. In fact, we have found this effect in our 
previous experimental measurements [10]. Table I gives the 
bandwidth before, BW0, and after the filtering, BWf, showing 
an increase up to 60MHz while the predicted power loss is 
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Fig. 2.  Upper row: Overall pulse spread versus time. Lower row: Output power distribution as a function of output angle (vertical axis) and time 
(horizontal axis). Both figures are derived for the maximum tested fiber length: 175m for the GH (left), 100m for the HFB (middle) and 150m for the PGU 
fiber (right). The solid lines joint the delays for which the power is maximum at each output angle. The dashed lines give the delay in the absence of 
diffusion. 
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Fig. 3.  Upper row: Output power distribution as a function of output angle (vertical axis) and time (horizontal axis) for a 50 meter length. Lower row: 
Comparison of original (dashed line) and filtered (solid line) frequency responses at 50 m. Data for GH is represented on the left, data for HFB is in the 
middle and PGU data, on the right. 

always less than 3dB. In fact, the effect of the filter makes all 
three fibers viable for a Fast Ethernet link at 125 Mbps in 
50m, while they were hardly able to reach this rate without 
filtering. 

You can see that although all the power distributions in the 
upper row of Figure 3 have a similar tendency, the angular 
ranges are different for each fiber type, which suggests that the 
angular range for which strong diffusion occurs depends on 
fiber type and that it is possible to tailor the aperture diameter 
of the detector that maximizes the bandwidth without 
noticeably increasing the power loss. 

 
TABLE I 

SPATIAL FILTER EFFECT ON FIBER LOSS AND BANDWIDTH 

 GH HFB PGU 

Loss (dB) 1.84 2.67 2.68 

BW0 (MHz) 122 127 102 

BWf (MHz) 161 176 161 

 

CONCLUSION 
We propose a fast and robust method to obtain the space-

time variation of optical power with propagation from which 
angular power distribution, attenuation, bandwidth and pulse 
spreading versus fiber length can be derived. We have verified 
the validity of the model by comparing model predictions with 
experimental results. Using the information provided by the 
space-time power distribution we found that fiber bandwidth 

can be increased by an appropriate spatial filter, as we had 
shown experimentally before. Therefore, a good fiber 
characterization can be applied to optimize fiber performance 
in POF links. 
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